INCIDENCE AND ISOLATION OF SALMONELLAE FROM SOME MEAT PRODUCTS

Edris, A.M.a, Shaltout, F.A.a, Salem, G.H.b, El-Toukhy, E.I.b
a Dept, of Food Control, Fac. Vet. Med., Benha University, b Dept. of Biotechnology, Animal Health Research Institute, Dokki

ABSTRACT

This experiment was conducted on a total of three hundred random samples of meat products include (100 luncheon beef, 100 fresh sausage and 100 frozen minced meat samples); collected from different supermarkets at Qalyubia Governorate; transferred directly to the laboratory under strict hygienic conditions; for the detection, isolation and identification of salmonellae bacteriologically. Salmonellae were detected in 5.3 % of the examined meat product samples. The percentage of Salmonellae in luncheon meat, fresh sausage and frozen minced meat was 0 %, 10 % and 6 % respectively. The isolated salmonellae serovars from fresh sausage were S. typhi (4 %), S. typhimurium (4%) and S. enteritidis (2%). The isolated salmonellae in frozen minced meat were S. typhi (2%) and S. typhimurium (4%). The current results indicated that the fresh sausage and frozen packed minced meat might represent a source for Salmonella as a foodborne disease for human being.

KEY WORDS: Luncheon, Minced meat, Salmonella, Sausage, Serovars.

1. INTRODUCTION

Meat and meat by products are high in moisture, nitrogenous compounds, minerals, growth factors, fermentable carbohydrates (glycogen) and of favorable pH, therefore are considered as an ideal culture medium for growth of many organisms [18]. Meat products such as sausage, luncheon and minced meat are gaining popularity because they represent quick easily prepared meat meals and solve the problem of the shortage in fresh meat of high price which is not available for large numbers of families due to limited income. Foodborne Salmonellosis continues to be a significant public health problem. Various meat products have been associated with outbreaks caused by Salmonella, Shigella and E. coli [8]. Some outbreaks of food poisoning were found to be due to consumption of meat contaminated with Salmonella organisms [20, 27]. Motile Salmonella is principally of concern as a cause of food born disease in human and is a major portion of human Salmonellosis [31]. However, many of Salmonella strains are so commonly isolated. Salmonellae could be divided into two main groups. The first group is of human origin, S. typhi and S. paratyphi (A, B and C). The second group is considered to be of animal origin, caused by other Salmonellae [21]. During the last two decades, Salmonella was considered the most common food borne pathogen in the world due to its increasing incidence [11] and its association with consumption of ready to

Fac. Vet. Med., Benha University, Egypt
eat meat products. Worldwide, there are about 275 million humans had diarrheal diseases caused by Salmonella [6].

The need for control or minimize food poisoning outbreaks depends greatly on investigating the causative agents in food (meat products) and eliminating them to ensure its safety and to protect public health from microbial contamination [19]. Therefore, the aim of the present study was to throw the light on the incidence, isolation and identification of Salmonellae from some meat products (Luncheon, Sausage and frozen minced meat).

2. MATERIALS AND METHODS

2.1. Collection of samples
A total of three hundred random samples of luncheon, sausage and frozen minced meat (100 samples of each) were collected from different supermarkets at Qalyubia Governorate. The collected samples were transferred directly to the laboratory in an ice box under complete aseptic conditions. The samples were immediately examined bacteriologically for the detection of Salmonellae.

2.2. Isolation and identification of Salmonella:
The techniques adopted were carried out according to ICMSF [21]: These techniques were recommended by other investigators [2, 26].

2.2.1. Pre-enrichment:
Twenty five grams of each meat product sample were taken, cut into pieces, using sterile forceps and scissors and blended for two minutes in sterile blender jar containing 225 ml of buffered peptone water (BPW) (0.1%) as a pre-enrichment broth and incubated at 37°C for 24 hrs.

2.2.2. Enrichment:
0.1 ml of pre-enrichment culture was transferred into sterile tubes containing 10 ml of Rappaport Vassiliadis broth [32], and the tubes were then incubated at 43°C for 24 hrs.

2.2.3. Selective plating on Xylose lysine deoxy cholate (XLD) agar plates.

2.3. Identification of the isolates:
2.3.1. Microscopical examination [9]: Films from the prepared pure cultures were stained with Gram’s stain and examined microscopically. Salmonellae are Gram negative short bacilli.

2.3.2. Biochemical examination:
Non-lactose fermenting isolates were biochemically identified using the criteria which are described by Edwards and Ewing (12) and Cruickshank et al. [9].

2.3.3. Serological identification:
Isolates proved biochemically to be Salmonella microorganisms were subjected to serological identification according to the Kauffman white scheme [22].

2.4. Determination of O (somatic) antigen:
Separate O anti sera were applied to determine the group of the Salmonella isolates.

2.5. Determination of H (Flagellar) antigen:
Polyvalent H anti sera for both phase 1 and phase 2 were tried in order to determine the complete antigenic formula of the isolates.

3. RESULTS AND DISCUSSION

Despite of the traditional food hygiene efforts for reduction of agents responsible for food borne illness, Salmonella remains as one of the major food borne health hazards, and meat plays an important role, as a reservoir, in disseminating Salmonellae. In the present study a total of three hundred random samples of meat products (100 samples of luncheon of beef, 100 samples of fresh sausage and 100
samples of frozen minced meat) were examined for Salmonellae. Salmonellae were detected in 5.3 % of the examined meat product samples. The percentage of Salmonellae in luncheon meat, fresh sausage and frozen minced meat was 0 %, 10 % and 6 % respectively.

The results present in table (1) and figure (1) revealed that Salmonellae failed to be detected in the examined luncheon samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of samples</th>
<th>Positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luncheon (beef)</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fresh sausage</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Frozen packed minced meat</td>
<td>100</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>16</td>
<td>5.3</td>
</tr>
</tbody>
</table>

From the results recorded in table (1) and figure (1), it’s clear that 6 % of the examined samples of frozen packed minced meat were positive for Salmonellae. This result agrees with that of Abd El-Aziz et al. [2], El-Mosalami et al. [13] while lower results were reported by Abd El-Atty and Meshref [1] (2 %). Nearly similar results were obtained by Abd El-Aziz et al. [3] 5%, Darwish et al. [10] (5%).

It’s evident from the results recorded in table (1) that fresh sausage had the higher incidence of Salmonella contamination followed by frozen packed minced meat. While Salmonellae could not be detected in luncheon.

The high incidence of Salmonellae in frozen packed minced meat may be due to cutting and contamination of meat besides the increase in its water and oxygen contents as well as contamination from grinders, air, packaging materials and hands of the workers. Temperature rise (2-4°C) during grinding could also increase the incidence of Salmonella organisms [16].

The absence of Salmonellae in luncheon meat may be due to the addition of food additives such as spices and preservatives, which have an antimicrobial activity and inhibit survival and multiplication of micro-organisms [24]. This also may be attributed to the exposure to high temperature during processing and cooking procedures. The high incidence of Salmonella in fresh sausage may also be attributed to the fact that this product is made from raw meat in addition to natural casing is often used in the manufacture which may be important source of
Salmonella specially if proper hygienic measures is neglected [15]. From the result recorded in table (2) and figure (2), it’s clear that 5 Salmonella serovars were identified from fresh sausage samples, 2 (4%) strains as S. typhi, 2 (4%) strains as S. typhimurium and 1 (2%) strain as S. enteritidis. Nearly Similar results were obtained by Rao and Nandy [30] where they could isolate S. typhimurium and S. enteritidis with a percentage of 2.5% for each strain.

![Table 2 Serotyping of Salmonellae isolated from the examined meat product samples.](image)

It’s evident that 3 Salmonella serovars were isolated from the examined frozen packed minced meat samples and identified as 2 (4%) strains as S. typhimurium and one (2%) strain S. typhi (table 3). This result agrees with that obtained by Gobran [17] who recorded that the incidence of S. typhi and S. typhimurium in the examined minced meat samples was 4% for each strain.

![Table 3 Antigenic formula of Salmonellae recovered from the examined meat product samples.](image)

4. REFERENCES

تواجد وعزل ميكروبات السالمونيلا في بعض منتجات اللحوم
أبو بكر مصطفى إدريس ـ فهم عزيز الدين شلتوت ـ جمال حلمي محمد سالم ـ عصام إسماعيل محمد الطوخي
قسم مراقبة الأغذية ـ كلية الطب البيطري بمشتهر ـ جامعة بنها ـ قسم البيوتكنولوجى ـ معهد بحوث صحة الحيوان-الدقى

الملخص العربي
أجريت هذه الدراسة على ثلاث مائة عينة من اللانشون والسجق واللحوم المفرومة والمجمدة (مائة عينة من كل نوع) من بعض السوبر ماركت المختلفة بمحافظة القليوبية وقد تم إرسال هذه العينات على وجه السرعة تحت ظروف صحية إلى المعامل لفحصها ببكتريولوجيا والتعرف على الميكروبات. وقد أوضحت الدراسة عن النتائج التالية: لم يتم عزل ميكروب السالمونيلا من اللانشون بينما كانت نسبة ميكروب السالمونيلا في السجق الطازج (10%) وكانت العترات المعزولة هي سالمونيلا تيفي (4%) وسامونيلا تيفيميوريم (4%) وسامونيلا انترسيد (2%) في حين كانت نسبة ميكروب السالمونيلا في اللحوم المفرومة المجمدة (6%) وكانت العترات المعزولة هي سالمونيلا تيفي (2%) وسامونيلا تيفيميوريم (4%).